Search results

Search for "metallic nanowires" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • Abstract Metallic nanowires (NWs) are sensitive to heat treatment and can split into shorter fragments within minutes at temperatures far below the melting point. This process can hinder the functioning of NW-based devices that are subject to relatively mild temperatures. Commonly, heat-induced
  • agreement with the experimental observations. Our finding suggests that heat-induced fragmentation of metallic nanowires in general cannot be purely explained by the commonly accepted Rayleigh instability model, but should include effects related to the interaction with the substrate. Single Ag NW suspended
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • differences between the polytypes are very small [14][25]. In contrast, molecular dynamics simulations of metallic nanowires show a phase transformation from fcc to hcp below a critical diameter [26]. These findings support the feasibility of obtaining new hexagonal structures under conditions where surface
PDF
Album
Full Research Paper
Published 15 Nov 2023

Plasma modes in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2022, 13, 292–297, doi:10.3762/bjnano.13.24

Graphical Abstract
  • |Δ| in superconducting nanowires one finds [5]: where Rξ is the normal-state resistance of the wire segment of length equal to the superconducting coherence length ξ and Rq = 2π/e2 ≃ 25.8 kΩ is the quantum resistance unit. For generic metallic nanowires one typically has Rξ ≪ Rq, implying that
PDF
Album
Full Research Paper
Published 04 Mar 2022

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • , carbon nanotubes (CNT), conductive polymers, and metallic nanowires, have been tested commercially as alternative to ITO films for flexible optoelectronic devices [6][7][8][9]. Amongst them, graphene and carbon materials, particularly CNTs, display low optical transparency and high sheet resistance owing
PDF
Album
Full Research Paper
Published 01 Jul 2021

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • also related to an exchange length parameter, λex = π√(A/K), where A is the exchange stiffness and K is the anisotropy constant, respectively. Even for single-component metallic nanowires (e.g., Ni) of high aspect ratio, different magnetization reversal mechanisms might be in work (from the simplest
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • size depends on elastic properties: (1) increase in the Young’s modulus of metallic nanowires relative to the bulk value of the metal, as their diameters are reduced (e.g., Ag and Pd [107][108][109] nanowires); (2) decrease of Young’s modulus with decreasing size, for example, for Cr nanocantilevers
PDF
Album
Review
Published 25 Jan 2018

Nonconservative current-driven dynamics: beyond the nanoscale

  • Brian Cunningham,
  • Tchavdar N. Todorov and
  • Daniel Dundas

Beilstein J. Nanotechnol. 2015, 6, 2140–2147, doi:10.3762/bjnano.6.219

Graphical Abstract
  • Brian Cunningham Tchavdar N. Todorov Daniel Dundas Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K. 10.3762/bjnano.6.219 Abstract Long metallic nanowires combine crucial factors for nonconservative current-driven atomic motion
PDF
Album
Full Research Paper
Published 13 Nov 2015

Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

  • Gian Carlo Gazzadi and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2015, 6, 1298–1305, doi:10.3762/bjnano.6.134

Graphical Abstract
  • graphitized C. The breakdown current density is found at 2.1 × 107 A/cm2. The role played by resistive heating and electromigration in these transitions is discussed. Keywords: cobalt; electromigration; focused electron beam induced deposition (FEBID); metallic nanowires; Introduction The growing importance
PDF
Album
Full Research Paper
Published 11 Jun 2015

Filling of carbon nanotubes and nanofibres

  • Reece D. Gately and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2015, 6, 508–516, doi:10.3762/bjnano.6.53

Graphical Abstract
  • is still very much prevalent today. The main advantages of using CNTs to produce metallic nanowires is that the CNTs act as a template for self-assembly of the nanowires [40][41] and the CNT structure can act as a protective sheath to protect the nanowire from being damaged by chemicals in harsh
PDF
Album
Review
Published 19 Feb 2015

Electrical contacts to individual SWCNTs: A review

  • Wei Liu,
  • Christofer Hierold and
  • Miroslav Haluska

Beilstein J. Nanotechnol. 2014, 5, 2202–2215, doi:10.3762/bjnano.5.229

Graphical Abstract
  • processes which could be used as a scale-up process for patterning metal–nanotube contacts. For instance, Vazquez-Mena et al. [72] developed a stencil lithography process to fabricate metallic nanowires at the wafer level. Nanoslits with a width down to 70 nm were defined on a wafer level membrane made of
PDF
Album
Review
Published 21 Nov 2014

Self-organization of mesoscopic silver wires by electrochemical deposition

  • Sheng Zhong,
  • Thomas Koch,
  • Stefan Walheim,
  • Harald Rösner,
  • Eberhard Nold,
  • Aaron Kobler,
  • Torsten Scherer,
  • Di Wang,
  • Christian Kübel,
  • Mu Wang,
  • Horst Hahn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 1285–1290, doi:10.3762/bjnano.5.142

Graphical Abstract
  • mesoscale metal wires have attracted considerable attention due to their potential application in new electronic, sensor, and optical devices [1][2][3][4][5][6][7][8][9][10]. Furthermore, metallic nanowires and -contacts play a key role as leads and contacts for contacting molecules in the field of
  • methods to fabricate mesoscale metallic wires: Electron beam lithography is a precise and well-controlled method, yet for larger numbers of wires rather expensive and time consuming. Electrochemically oxidized anodic alumina membrane (AAM) templates are also often used to fabricate metallic nanowires [24
PDF
Album
Full Research Paper
Published 15 Aug 2014
Other Beilstein-Institut Open Science Activities